Microbe-substrate and gas-microbe interaction factors in relation to liquid manure anaerobic digestion and crop productivity

Autores/as

DOI:

https://doi.org/10.55204/trc.v3i1.e132

Palabras clave:

Abono líquido, Factor de interacción, Rendimiento de biogás, Digestión anaeróbica, Producción de cultivos

Resumen

Chemical fertilizer’s increasing cost is becoming a major bottleneck for small and large farmland cultivation, of which liquid manure (LM) offers a comparative advantage. LM is the end-product of anaerobic digestion (AD) of several organic matter and/or their compost mixed manually or mechanically in dugged trenches or bioreactor using water. Overall, the microorganisms present helps significantly in breaking down soil organic matter to useful nutrient for the plant’s survival and growth, as moisture is essential for bacterial proliferation. In this work, interaction between the substrate and microbe (N) and microbe and gas being produced (K) in mesophilic AD system is examined using an existing model. Results shows that, N and K ranges from 0.00046-0.0016 and 0.1643-0.1987 respectively between 25-45℃ for LM digested for 120 days. Statistical parameters, R2 and adjusted R2 shows that, empirical biogas yield at different choice of mesophilic temperature adequately fits the correlated values for estimates of the interaction factors obtained. This study by implication, sought to improve on LM studies and exploration for both agricultural use and biogas production as a potential replacement of the costly chemical fertilizer.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Abubakar, A. M., Umdagas, L. B., Waziri, A. Y., & Itamah, E. I. (2022). Estimation of biogas potential of liquid manure from kinetic models at different temperature. International Journal of Scientific Research in Computer Science and Engineering (IJSRCSE), 10(2), 46–63. www.isroset.org

Adar, E. (2020). Optimization of cattle manure liquid fraction anaerobic digestion at different temperatures: Modelling by Taguchi method. Sigma Journal of Engineering and Natural Sciences, 1753–1766(4), 38.

Ahlberg-Eliasson, K., Westerholm, M., Isaksson, S., & Schnurer, A. (2021). Anaerobic digestion of animal manure and influence of organic loading rate and temperature on process performance, microbiology, and methane emission from digestates. Frontiers in Energy Research, 9(740314), 1–16. https://doi.org/10.3389/fenrg.2021.740314

Alagesan, P. (n.d.). Simple liquid manure production technique. The Hindu, 1–2.

Alamene, A., & Howells, P. A. (2022). Evaluation of sustainable bio-liquid fertilizer (Supergro) on the production of fluted pumpkin (Telfairia occidentalis). European Journal of Food Science and Technology, 10(1), 20–42. https://www.eajournals.org

Anonymous. (2001). Factors that influence microbial growth. In Evaluation and definition of potentially hazardous foods (pp. 1–36).

Ansar, M., Bahrudin, Fathurrahman, Darman, S., Thaha, A. R., Angka, A. W., & Rahmadanih. (2021). Application of bokashi goat manure and organic liquid fertilizer to improve the growth and yield of Lembah Palu shallot variety. The 1st International Conference on Environmental Ecology of Food Security, 681(012047), 1–7. https://doi.org/10.1088/1755-1315/681/1/012047

Antoneli, V., Mosele, A. C., Bednarz, J. A., Pulido-Fernandez, M., Lozano-Parra, J., Keesstra, S. D., & Rodrigo-Comino, J. (2019). Effects of applying liquid swine manure on soil quality and yield production in tropical soybean crops (Parana, Brazil). Sustainabilitylity, 11(3898), 1–11. https://doi.org/10.3390/su11143898

Arunkumar, S., Srinivasappa, K. N., & Reddy, M. V. (2021). Effect of bio-digester liquid manure on growth, yield and quality of Capsicum under open field condition. International Journal of Current Microbiology and Applied Sciences, 10(02), 2857–2864. https://doi.org/https://doi.org/10.20546/ijcmas.2021.1002.317

BEL. (2005). Liquid and solid manure application. In Building Environmental Leaders (pp. 1–2). University of Wisconsin-Extension Publication.

Byeon, J.-E., Lee, H.-J., Ryoo, J.-W., & Hwang, S.-G. (2021). Effect of different liquid manure anaerobic digestates on the growth and yield of rice and the optimum application concentration. Korean Journal of Crop Science, 66(1), 97–104. https://doi.org/https://doi.org/10.7740/kjcs.2021.66.1.097

Byshov, N. V, Uspenskiy, I. A., Yukhin, I. A., & Limarenko, N. V. (2020). Ecological and technological criteria for the efficient utilization of liquid manure. 6th International Conference on Agriproducts Processing and Farming: Earth and Environmental Science, 422(012069), 1–4. https://doi.org/10.1088/1755-1315/422/1/012069

Camilleri-Rumbau, M. S., Briceno, K., Sotoft, L. F., Christensen, K. V., Roda-Serrat, M. C., Errico, M., & Norddahl, B. (2021). Treatment of manure and digestate liquid fractions using membranes: Opportunities and challenges. International Journal of Environmental Research and Public Health, 18(3107). https://doi.org/https://doi.org/10.3390/ijerph18063107

Choi, S.-T., Ahn, G.-H., Kim, S.-C., & Kim, E.-S. (2017). Effect of liquid manure and chemical fertilizers on shoot growth and nitrogen status of young “Fuyu” persimmon trees. Journal of Agricultural Chemistry and Environment, 6, 144–151. https://doi.org/https://doi.org/10.4236/jacen/2017.63009

Elaiyaraju, P., & Partha, N. (2016). Studies on biogas production by anaerobic process using agroindustrial wastes. Res. Agr. Eng., 62(2), 73–82. https://doi.org/10.17221/65/2013-RAE

Eronmosele, P., Thelma, A. E., & Essienubong, A. I. (2020). Comparative study of the kinetics of biogas yield from the codigestion of poultry droppings with waterleaf and poultry droppings with elephant grass. Engineering Sciences (NWSAENS), 15(3), 139–150. https://doi.org/http://dx.doi.org/10.12739/NWSA.2020.15.3.1A0457

Ess, D. R., Hawkins, S. E., & Morris, D. K. (2012). Implementing site-specific management: Liquid manure application. Knowledge to Go: Purdue Extension. http://www.agcom.purdue.edu/AgCom/Pubs/menu.htm

Gaby, J. C., Zamanzadeh, M., & Horn, S. J. (2017). The effect of temperature and retention time on methane production and microbial community composition in staged anaerobic digesters fed with food waste. Biotechnology for Biofuels, 10(302), 1–13. https://doi.org/https://doi.org/10.1186/s13068-017-0989-4

Gajjela, S., Chatterjee, R., Subba, S., & Sen, A. (2018). Prospect of liquid organic manure on organic bitter gourd cultivation. Journal of Pharmacognosy and Phytochemistry, 7(6), 189–193. www.phytojournal.com

Halder, J. N., Kang, T.-W., Kim, S.-R., Yabe, M., & Lee, M.-G. (2018). The application of liquid fertilizer quality certification (LFQC) for liquid manure fertilizers and probability of implementation as a quality specification for business purposes in South Korea. J. Fac. Agr., 63(2), 443–449. https://doi.org/https://doi.org/10.5109/1955667

Hoorman, J. J., Rausch, J. N., & Brown, L. C. (2009). Guidelines for applying liquid animal manure to cropland with subsurface and surface drains. In H. Keener, T. H. Harrigan, W. G. Bickert, M. J. Monnin, F. E. Gibbs, S. R. Reamer, & M. I. Gangwar (Eds.), Agriculture and Natural Resources (ANR-21). CFAES Publications. https://ohioline.osu.edu

Lorimor, J. (n.d.). Ammonia losses from broadcast liquid manure. Management/Economics, 1–2.

Mahanta, D., & Dhar, S. (2021). Liquid organic manures: A boon to organic farmers. In Indian Farming. Indian Council of Agricultural Research. epubs.icar.org.in

Maity, P., Rijal, R., & Kumar, A. (2020). Application of liquid manures on growth of various crops: A review. International Journal of Current Microbiology and Applied Sciences, 11, 1601–1611. http://www.ijcmas.com

Manitoba. (2015). Properties of manure. manitoba.ca/agriculture

Masih, M. R., Choudhary, R. L., Banani, S., & Singh, B. (2009). Liquid organic manure is a boon for organic cultivation of crops. International Journal of Agricultural Sciences, 5(1), 8–10.

Msibi, B. M., Mukabwe, W. O., Manyatsi, A. M., Mhazo, N., & Masarirambi, M. T. (2014). Effects of liquid manure on growth and yield of spinach (Beta vulgaris Var Cicla) in a sub-tropical environment in Swaziland. Asian Journal of Agricultural Sciences, 6(2), 40–47. https://doi.org/10.19026/ajas.6.5301

Murillo-Roos, M., Uribe-Lorio, L., Fuentes-Schweizer, P., Vidaurre-Barahona, D., Brenes-Guillen, L., Jimenez, I., Arguedas, T., Liao, W., & Uribe, L. (2022). Biogas production and microbial communities of mesophilic and thermophilic anaerobic co-digestion of animal manures and food wastes in Costa Rica. Energies, 15(3252), 1–16. https://doi.org/https://doi.org/10.3390/en15093252

Muvhiiwa, R. F., Chafa, P. M., Chikowore, N., Chitsiga, T., Matambo, T. S., & Low, M. (2016). Effect of temperature and pH on biogas production from cow dung and dog faeces. African Journals Online (AJOL), 45(4).

Nene, Y. L. (2018). The concept and formulation of Kunapajala, the world’s oldest fermentated liquid ornanic manure. Asian Agri-History, 22(1), 8–14. https://doi.org/10.17485/aah/2018/v22i1/18292

Nwoye, C., Ferdinand, A., Agatha, I., & Samuelmary, O. (2012). Model for assessment evaluation of methane gas yield based on hydraulic retention time during fruit wastes biodigestion. Journal of Minerals and Materials Characterization and Engineering (JMMCE), 11, 947–952. http://www.scirp.org/journal/jmmce

Onduru, D., Gachini, G. N., Jager, A. de, & Diop, J. M. (1999). Participatory research on compost and liquid manure in Kenya. Managing Africa’s Soils, 1–31.

Pajak, J. J., Zebrowska, T., Dabowski, P., Dlugolecka, Z., & Kowalik, B. (2001). The influence of fertilization with liquid cattle manure on the nutritive value of lucerne forage for ruminants. Journal of Animal and Feed Sciences, 10(2), 351–355. https://doi.org/https://doi.org/10.22358/jafs/70120/2001

Pandey, P., & Soupir, M. (2012). Impacts of temperatures on biogas production in dairy manure anaerobic digestion. International Journal of Engineering and Technology. https://doi.org/10.7763/IJET.2012.V4.448

Popluga, D., Kreismane, D., & Cīrulis, J. (2020). Separation of liquid manure and digestate: Climate-friendly agricultural practice in Latvia.

Rahmad, Karim, A., Nafie, N. La, & Jayadi, M. (2018). Synthesis of liquid organic fertilizer based on chicken manure using Biosca and Fungus bioactivator Trichoderma harzianum. Indonesia Chimica Acta, 11(2), 28–44.

Rajagopal, R. (2013). Inhibiting factors in the anaerobic digestion process for biogas production. Bioresource Technology, 143, 632–641.

Rana, L. (n.d.). Liquid manure. In J. Bahadur & D. Gharti (Eds.), The Farmers’ Handbook (p. 11). Grihasthi Communications.

Rico, C., Rico, J. L., & Lasa, C. (2022). Anaerobic digestion of the liquid fraction of dairy manure separated by screw-pressing and centrifugation in a UASB reactor at 25C (pp. 1–16).

Rico, C., Rico, J. L., Tejero, I., Munoz, N., & Gomez, B. (2011). Anaerobic digestion of the liquid fraction of dairy manure in pilot plant for biogas production: Residual methane yield of digestate. Waste Management, 31(9–10), 2167–2173. https://doi.org/https://doi.org/10.1016/j.wasman.2011.04.018

Ritz, C. W., & Merka, W. C. (2013). Maximizing poultry manure use through nutrient management planning. In Bulletin 1245 (pp. 1–6). UGA Extension-University of Georgia Cooperative Extension.

Sanadi, N. F. A., Lee, C. T., Sarmidi, M. R., Klemes, J. J., & Zhang, Z. (2019). Characterisation of liquid fertilizer from different types pf bio-waste compost and its correlation with the compost nutrients. Chemical Engineering Transaction, 72, 253–258. https://doi.org/10.3303/CET1972043

Shapiro, C. A., Kranz, W. L., & Wortmann, C. S. (2005). Salt thresholds for liquid manure applied to corn and soybean. Transactions of the ASAE, 48(3), 1005–1013.

Sichilalu, S., Ngoyi, L., Mathaba, T., Wanjiru, E., & Xia, X. (2017). Experimental determination of a critical temperature for maximum anaerobic digester biogas production. Multi-Disciplinary Conference, 1–6. www.manzivalley.com

Singh, G., Jain, V. K., & Singh, A. (2017). Effect of temperature and other factors on anaerobic digestion process, responsible for bio gas production. International Journal of Theoretical and Applied Mechanics (IJTAM), 12(3), 637–657. http://www.ripublication.com

Sommer, S. G., Hafner, S. D., Laubach, J., van der Weerden, T. J., Leytem, A. B., & Pacholski, A. (2022). Model for calculating ammonia emission from stored animal liquid manure. Biosystems Engineering, 223, 41–55. https://doi.org/https://doi.org/10.1016/j.biosystemseng.2022.08.007

Sultan, S. M., Wadullah, H. M., Mohammed, A. G., & Ahmed, O. K. (2019). Improve biogas production by using bacteria. 1st Al-Noor International Conference for Science and Technology (NICST 2019), 73–78.

Supriya, M. E., & Harish, J. (2019). Preparation of liquid manures and their quality and its use in organic farming (S. T. Bhairappanavar, R. Jayaramaiah, G. Pramod, & B. T. Naveenkumar (eds.)). https://www.slideshare.net/HarishReddy280/preparation-of-liquid-manures-and-their-quality-and-its-use-in-organic-farming

Sutaryo. (2012). Optimization and inhibition of anaerobic digestion of livestock manure [Aarhus University: Technical Report BCE-TR-3]. In J. Rintala, H. W. Uellendahl, P. Kristensen, H. B. Moller, & A. J. Ward (Eds.), Biological and Chemical Engineering. http://www.eng.au.dk

Sutton, A. L., Nelson, D. W., & Jones, D. D. (1985). Utilization of animal manure as fertilizer. In Soil Fertility (pp. 1–12). Purdue University.

Tampio, E., Marttinen, S., & Rintala, J. (2022). Liquid fertilizer products from anaerobic digestion of food waste: Mass, nutrient and energy balance of four digestate liquid treatment systems (pp. 1–55).

Tian, G., Yang, B., Dong, M., Zhu, R., Yin, F., Zhao, X., Wang, Y., Wang, Q., Zhang, W., & Cui, X. (2018). The effect of temperature on the microbial communities of peak biogas production in batch biogas reactors. Renewable Energy, 123, 15–25. https://doi.org/https://doi.org/10.1016/j.renene.2018.01.119

Ukpai, P. A., Agbo, P. E., & Nnabuchi, M. N. (2015). The effect of temperature on the rate of digestion and biogas production using cow dung, cow pea, cassava peeling. International Journal of Scientific & Engineering Research, 6(1).

Vishwakarma, K., Kumar, N., Shandilya, C., Mohapatra, S., Bhayana, S., & Varma, A. (2020). Revisiting plant-microbe interactions and microbial consortia application for enhancing sustainable agriculture: A review. Frontiers in Microbiology, 11, 1–21. https://doi.org/10.3389/fmicb.2020.560406

Wallace, T. (2008). Sampling liquid manure for analysis (pp. 1–6). Agri-Facts: Practical Information for Alberta’s Agriculture Industry.

Wen, Z., Frear, C., & Chen, S. (2007). Anaerobic digestion of liquid dairy manure using a sequential continuous-stirred tank reactor system. Journal of Chemical Technology and Biotechnology, 82(8), 758–766. https://doi.org/https://doi.org/10.1002/jctb.1736

Wilkie, A. C. (2005). Anaerobic digestion of dairy manure: Design and process considerations. In N. Y. Ithaca (Ed.), Dairy Manure Management Conference: Natural Resource, Agriculture, and Engineering Science (NRAES-176) (pp. 301–312). Cornell University.

Yang, F., Han, B., Gu, Y., & Zhang, K. (2020). Swine liquid manure: A hotspot of mobile genetic elements and antibiotic resistance genes. Scientific Reports, 10(15037), 1–10. https://doi.org/https://doi.org/10.1038/s41598-020-72149-6

Zaeni, A., Susilowati, P. E., Harlia, & Rasmin, N. (2019). Anaerobic digestion of solid and liquid organic waste with microorganism from manure. The 5th International Seminar on Sciences: Earth and Environmental Sciences 299, 299(012063), 1–9. https://doi.org/10.1088/1755-1315/299/1/012063

Zahoor, A., Arslan, C., Sattar, A., Tahir, M. A., Farooqi, Z. U. R., Shoaib, M., Saqlain, M., Safdar, M., & Ahmad, N. (2021). Effect of temperature on biogas production potential of banana peels co digested with biogas slurry in anaerobic bioreactor. Engineering Heritage Journal (GWK), 5(2), 49–52. https://doi.org/https://doi.org/10.26480/gwk.02.2021.49.52

Zebarth, B. J., Paul, J. W., Schmidt, O., & McDougall, R. (1996). Influence of the time and rate of liquid-manure application on yield and nitrogen utilization of silage corn in South Coastal British Columbia. Canadian Journal of Soil Science, 76, 153–164.

Zeeman, G. (1991). Mesophilic and psychrophilic digestion of liquid manure.

Descargas

Publicado

2022-11-22

Cómo citar

Musa Abubakar, A., Khursheed, A., Tariq, M., & Musa Haruna, N. (2022). Microbe-substrate and gas-microbe interaction factors in relation to liquid manure anaerobic digestion and crop productivity. Tesla Revista Científica, 2(2), e132. https://doi.org/10.55204/trc.v3i1.e132

Número

Sección

Artículos de Investigación Original