Retos en el enfrentamiento del shock hipovolémico en el paciente politraumatizado
DOI:
https://doi.org/10.55204/trc.v4i1.e364Palabras clave:
Shock hemorrágico, paciente politraumatizado, reanimación con control de dañosResumen
Durante el reconocimiento y tratamiento de la hemorragia, que puede resultar potencialmente mortal en el paciente politraumatizado, se presentan desafíos para los profesionales en las diferentes etapas de la atención médica. Se realizó una revisión de la fisiopatología del shock hemorrágico y de las estrategias actuales de la conducta ante la pérdida aguda de sangre secundaria a trauma. En este sentido, se hizo énfasis en las lesiones que pueden pasar desapercibidas en la evaluación inicial y en la aparente compensación fisiológica. Se abordaron aspectos controversiales relacionados con la decisión en cuanto al momento oportuno y el modo adecuado de iniciar correctamente la reanimación con control de daños para evitar el empeoramiento de los trastornos graves inherentes a esta condición, como la acidosis y la coagulopatía inducida por el trauma y sus estados de hipo o hipercoagulabilidad (trombótico). Se evaluó la controversia sobre la composición de los componentes que se transfunden durante la reanimación con control de daños, que justifica la tendencia en la práctica médica de transfundir con mayor frecuencia plasma liofilizado, en comparación con la de plasma fresco congelado compatible con ABO.
Descargas
Citas
Cannon JW. Hemorrhagic Shock. N. Engl. J. Med. 2018; 378: 370–379. http://doi.org/10.1056/NEJMra1705649
Tisherman SA, Schmicker RH, Brasel KJ, Bulger EM, Kerby JD, Minei JP, et al. Detailed description of all deaths in both the shock and traumatic brain injury hypertonic saline trials of the Resuscitation Outcomes Consortium. Ann Surg [Internet]. 2015;261(3):586–90. Disponible en: http://dx.doi.org/10.1097/SLA.0000000000000837
Fox EE, Holcomb JB, Wade CE, Bulger EM, Tilley BC. Earlier endpoints are required for hemorrhagic shock trials among severely injured patients. Shock [Internet]. 2017;47(5):567–73. Disponible en: http://dx.doi.org/10.1097/shk.0000000000000788
Maegele M, Lefering R, Yucel N, Tjardes T, Rixen D, Paffrath T, et al. Early coagulopathy in multiple injury: an analysis from the German Trauma Registry on 8724 patients. Injury [Internet]. 2007;38(3):298–304. Disponible en: http://dx.doi.org/10.1016/j.injury.2006.10.003
Niles SE, McLaughlin DF, Perkins JG, Wade CE, Li Y, Spinella PC, et al. Increased mortality associated with the early coagulopathy of trauma in combat casualties. J Trauma [Internet]. 2008;64(6):1459–63; discussion 1463-5. Disponible en: http://dx.doi.org/10.1097/TA.0b013e318174e8bc
Kutcher ME, Howard BM, Sperry JL, Hubbard AE, Decker AL, Cuschieri J, et al. Evolving beyond the vicious triad: Differential mediation of traumatic coagulopathy by injury, shock, and resuscitation. J Trauma Acute Care Surg [Internet]. 2015;78(3):516–23. Disponible en: http://dx.doi.org/10.1097/TA.0000000000000545
Srinivasan AJ, Morkane C, Martin DS, Welsby IJ. Should modulation of p50 be a therapeutic target in the critically ill? Expert Rev Hematol [Internet]. 2017;10(5):449–58. Disponible en: http://dx.doi.org/10.1080/17474086.2017.1313699
Mercado P, Maizel J, Beyls C, Titeca-Beauport D, Joris M, Kontar L, et al. Transthoracic echocardiography: an accurate and precise method for estimating cardiac output in the critically ill patient. Crit Care [Internet]. 2017;21(1). Disponible en: http://dx.doi.org/10.1186/s13054-017-1737-7
Jozwiak M, Monnet X, Teboul J-L. Monitoring: From cardiac output monitoring to echocardiography. Curr Opin Crit Care [Internet]. 2015;21(5):395–401. Disponible en: http://dx.doi.org/10.1097/mcc.0000000000000236
Antonelli M, Levy M, Andrews PJD, Chastre J, Hudson LD, Manthous C, et al. Hemodynamic monitoring in shock and implications for management. Intensive Care Med [Internet]. 2007;33(4):575–90. Disponible en: http://dx.doi.org/10.1007/s00134-007-0531-4
Narang N, Thibodeau JT, Levine BD, Gore MO, Ayers CR, Lange RA, et al. Inaccuracy of estimated resting oxygen uptake in the clinical setting. Circulation [Internet]. 2014;129(2):203–10. Disponible en: http://dx.doi.org/10.1161/CIRCULATIONAHA.113.003334
Brohi K, Cohen MJ, Ganter MT, Matthay MA, Mackersie RC, Pittet J-F. Acute traumatic coagulopathy: initiated by hypoperfusion: modulated through the protein C pathway?: Modulated through the protein C pathway? Ann Surg [Internet]. 2007;245(5):812–8. Disponible en: http://dx.doi.org/10.1097/01.sla.0000256862.79374.31
Kornblith LZ, Moore HB, Cohen MJ. Trauma-induced coagulopathy: The past, present, and future. J Thromb Haemost [Internet]. 2019;17(6):852–62. Disponible en: http://dx.doi.org/10.1111/jth.14450
Gonzalez Rodriguez E, Ostrowski SR, Cardenas JC, Baer LA, Tomasek JS, Henriksen HH, et al. Syndecan-1: A quantitative marker for the endotheliopathy of trauma. J Am Coll Surg [Internet]. 2017;225(3):419–27. Disponible en: http://dx.doi.org/10.1016/j.jamcollsurg.2017.05.012
Johansson P, Stensballe J, Ostrowski S. Shock induced endotheliopathy (SHINE) in acute critical illness - a unifying pathophysiologic mechanism. Crit Care [Internet]. 2017;21(1). Disponible en: http://dx.doi.org/10.1186/s13054-017-1605-5
Ostrowski SR, Henriksen HH, Stensballe J, Gybel-Brask M, Cardenas JC, Baer LA, et al. Sympathoadrenal activation and endotheliopathy are drivers of hypocoagulability and hyperfibrinolysis in trauma: A prospective observational study of 404 severely injured patients. J Trauma Acute Care Surg [Internet]. 2017;82(2):293–301. Disponible en: http://dx.doi.org/10.1097/ta.0000000000001304
Wu F, Chipman A, Pati S, Miyasawa B, Corash L, Kozar RA. Resuscitative strategies to modulate the endotheliopathy of trauma: From cell to patient. Shock [Internet]. 2020;53(5):575–84. Disponible en: http://dx.doi.org/10.1097/SHK.0000000000001378
Huber-Lang M, Lambris JD, Ward PA. Innate immune responses to trauma. Nat Immunol [Internet]. 2018;19(4):327–41. Disponible en: http://dx.doi.org/10.1038/s41590-018-0064-8
Rahbar E, Cardenas JC, Baimukanova G, Usadi B, Bruhn R, Pati S, et al. Endothelial glycocalyx shedding and vascular permeability in severely injured trauma patients. J Transl Med [Internet]. 2015;13(1):117. Disponible en: http://dx.doi.org/10.1186/s12967-015-0481-5
Meizoso JP, Moore EE, Pieracci FM, Saberi RA, Ghasabyan A, Chandler J, et al. Role of fibrinogen in trauma-induced coagulopathy. J Am Coll Surg [Internet]. 2022;234(4):465–73. Disponible en: http://dx.doi.org/10.1097/xcs.0000000000000078
Rossaint R, Afshari A, Bouillon B, Cerny V, Cimpoesu D, Curry N, et al. The European guideline on management of major bleeding and coagulopathy following trauma: sixth edition. Crit Care [Internet]. 2023;27(1):80. Disponible en: http://dx.doi.org/10.1186/s13054-023-04327-7
Esmon CT, Owen WG. The discovery of thrombomodulin: Discovery of thrombomodulin. J Thromb Haemost [Internet]. 2004;2(2):209–13. Disponible en: http://dx.doi.org/10.1046/j.1538-7933.2003.00537.x
Sillen M, Declerck PJ. Thrombin activatable fibrinolysis inhibitor (TAFI): An updated narrative review. Int J Mol Sci [Internet]. 2021;22(7):3670. Disponible en: http://dx.doi.org/10.3390/ijms22073670
Dobrotova M, Skornova I, Sokol J, Kubisz P, Stasko J, Simurda T. Successful use of a highly purified plasma von Willebrand factor concentrate containing little FVIII for the long-term prophylaxis of severe (type 3) von willebrand’s disease. Semin Thromb Hemost [Internet]. 2017;43(06):639–41. Disponible en: http://dx.doi.org/10.1055/s-0037-1603362
Zeineddin A, Dong J-F, Wu F, Terse P, Kozar RA. Role of Von Willebrand factor after injury: It may do more than we think. Shock [Internet]. 2021;55(6):717–22. Disponible en: http://dx.doi.org/10.1097/shk.0000000000001690
Casini A, de Moerloose P, Neerman-Arbez M. Clinical features and management of congenital fibrinogen deficiencies. Semin Thromb Hemost [Internet]. 2016;42(4):366–74. Disponible en: http://dx.doi.org/10.1055/s-0036-1571339
Mengoli C, Franchini M, Marano G, Pupella S, Vaglio S, Marietta M, et al. The use of fibrinogen concentrate for the management of trauma-related bleeding: a systematic review and meta-analysis. Blood Transfus [Internet]. 2017;15(4):318–24. Disponible en: http://dx.doi.org/10.2450/2017.0094-17
Földesi M, Merkei Z, Ferenci T, Nardai G. Fibrinogen level at hospital admission after multiple injury correlates with BMI and is negatively associated with the need for transfusion and early multiple organ failure. Injury [Internet]. 2021;52 Suppl 1:S15–20. Disponible en: http://dx.doi.org/10.1016/j.injury.2020.12.002
Davis PK, Musunuru H, Walsh M, Cassady R, Yount R, Losiniecki A, et al. Platelet dysfunction is an early marker for traumatic brain injury-induced coagulopathy. Neurocrit Care [Internet]. 2013;18(2):201–8. Disponible en: http://dx.doi.org/10.1007/s12028-012-9745-6
Chapin JC, Hajjar KA. Fibrinolysis and the control of blood coagulation. Blood Rev [Internet]. 2015; 29(1):17–24. Disponible en: http://dx.doi.org/10.1016/j.blre.2014.09.003
Chapman MP, Moore EE, Moore HB, Gonzalez E, Gamboni F, Chandler JG, et al. Overwhelming tPA release, not PAI-1 degradation, is responsible for hyperfibrinolysis in severely injured trauma patients. J Trauma Acute Care Surg [Internet]. 2016;80(1):16–23. Disponible en: http://dx.doi.org/10.1097/TA.0000000000000885
Moore HB, Moore EE, Lawson PJ, Gonzalez E, Fragoso M, Morton AP, et al. Fibrinolysis shutdown phenotype masks changes in rodent coagulation in tissue injury versus hemorrhagic shock. Surgery [Internet]. 2015;158(2):386–92. Disponible en: http://dx.doi.org/10.1016/j.surg.2015.04.008
Meizoso JP, Dudaryk R, Mulder MB, Ray JJ, Karcutskie CA, Eidelson SA, et al. Increased risk of fibrinolysis shutdown among severely injured trauma patients receiving tranexamic acid. J Trauma Acute Care Surg [Internet]. 2018;84(3):426–32. Disponible en: http://dx.doi.org/10.1097/ta.0000000000001792
Moore HB, Moore EE, Neal MD, Sheppard FR, Kornblith LZ, Draxler DF, et al. Fibrinolysis shutdown in trauma: Historical review and clinical implications. Anesth Analg [Internet]. 2019;129(3):762–73. Disponible en: http://dx.doi.org/10.1213/ANE.0000000000004234
Carroll SL, Dye DW, Smedley WA, Stephens SW, Reiff DA, Kerby JD, et al. Early and prehospital trauma deaths: Who might benefit from advanced resuscitative care? J Trauma Acute Care Surg [Internet]. 2020;88(6):776–82. Disponible en: http://dx.doi.org/10.1097/TA.0000000000002657
Berkeveld E, Popal Z, Schober P, Zuidema WP, Bloemers FW, Giannakopoulos GF. Prehospital time and mortality in polytrauma patients: a retrospective analysis. BMC Emerg Med [Internet]. 2021;21(1):78. Disponible en: http://dx.doi.org/10.1186/s12873-021-00476-6
Elkbuli A, Dowd B, Sanchez C, Shaikh S, Sutherland M, McKenney M. Emergency medical service transport time and trauma outcomes at an urban level 1 trauma center: Evaluation of prehospital emergency medical service response. Am Surg [Internet]. 2022;88(6):1090–6. Disponible en: http://dx.doi.org/10.1177/0003134820988827
Chen X, Gestring ML, Rosengart MR, Billiar TR, Peitzman AB, Sperry JL, et al. Speed is not everything: Identifying patients who may benefit from helicopter transport despite faster ground transport. J Trauma Acute Care Surg [Internet]. 2018;84(4):549–57. Disponible en: http://dx.doi.org/10.1097/TA.0000000000001769
Choi J, Carlos G, Nassar AK, Knowlton LM, Spain DA. The impact of trauma systems on patient outcomes. Curr Probl Surg [Internet]. 2021;58(1):100849. Disponible en: http://dx.doi.org/10.1016/j.cpsurg.2020.100849
Schröder H, Beckers SK, Ogrodzki K, Borgs C, Ziemann S, Follmann A, et al. Tele-EMS physicians improve life-threatening conditions during prehospital emergency missions. Sci Rep [Internet]. 2021;11(1):14366. Disponible en: http://dx.doi.org/10.1038/s41598-021-93287-5
Zhu CS, Cobb D, Jonas RB, Pokorny D, Rani M, Cotner-Pouncy T, et al. Shock index and pulse pressure as triggers for massive transfusion. J Trauma Acute Care Surg [Internet]. 2019;87(1S Suppl 1):S159–64. Disponible en: http://dx.doi.org/10.1097/TA.0000000000002333
Sperry JL, Guyette FX, Brown JB, Yazer MH, Triulzi DJ, Early-Young BJ, et al. Prehospital plasma during air medical transport in trauma patients at risk for hemorrhagic shock. N Engl J Med [Internet]. 2018;379(4):315–26. Disponible en: http://dx.doi.org/10.1056/NEJMoa1802345
Pusateri AE, Moore EE, Moore HB, Le TD, Guyette FX, Chapman MP, et al. Association of prehospital plasma transfusion with survival in trauma patients with hemorrhagic shock when transport times are longer than 20 minutes: A post hoc analysis of the PAMPer and COMBAT clinical trials: A post hoc analysis of the PAMPer and COMBAT clinical trials. JAMA Surg [Internet]. 2020;155(2):e195085. Disponible en: http://dx.doi.org/10.1001/jamasurg.2019.5085
Braverman MA, Smith A, Pokorny D, Axtman B, Shahan CP, Barry L, et al. Prehospital whole blood reduces early mortality in patients with hemorrhagic shock. Transfusion [Internet]. 2021;61 Suppl 1(S1):S15–21. Disponible en: http://dx.doi.org/10.1111/trf.16528
Maniruzzaman M, Rahaman MA. Effects of tranexamic acid on death, vascular occlusive events, and blood transfusion in trauma patients with significant haemorrhage (CRASH-2): a randomised, placebo-controlled trial. Banglad Crit Care J [Internet]. 2013;1(2):71–9. Disponible en: http://dx.doi.org/10.3329/bccj.v1i2.17198
Roberts I. Tranexamic acid in trauma: how should we use it? J Thromb Haemost [Internet]. 2015;13 Suppl 1:S195-9. Disponible en: http://dx.doi.org/10.1111/jth.12878
Imach S, Wafaisade A, Lefering R, Bohmer A, Schieren M, Suarez V, et al. The impact of prehospital tranexamic acid on mortality and transfusion requirements: Match-pair analysis from the nation wide German Trauma Register DGU(R). Crit. Care 2021, 25, 277. http://doi.org/10.1186/s13054-021-03701-7
Wafaisade A, Lefering R, Bouillon B, Bohmer AB, Gassler M, Ruppert M. Prehospital administration of tranexamic acid in trauma patients. Crit. Care 2016, 20, 143. http://doi.org/10.1186/s13054-016-1322-5
Moore HB, Moore EE, Huebner BR, Stettler GR, Nunns GR, Einersen PM, et al. Tranexamic acid is associated with increased mortality in patients with physiological fibrinolysis. J Surg Res [Internet]. 2017;220:438–43. Disponible en: http://dx.doi.org/10.1016/j.jss.2017.04.028
Diebel ME, Martin JV, Liberati DM, Diebel LN. The temporal response and mechanism of action of tranexamic acid in endothelial glycocalyx degradation. J Trauma Acute Care Surg [Internet]. 2018;84(1):75–80. Disponible en: http://dx.doi.org/10.1097/TA.0000000000001726
Duque P, Gonzalez-Zarco L, Martínez R, Gago S, Varela JA. Tranexamic acid use in severely injured patients, is it always appropriate? Rev Esp Anestesiol Reanim (Engl Ed) [Internet]. 2021;68(5):301–3. Disponible en: http://dx.doi.org/10.1016/j.redare.2020.06.016
Kheirbek T, Martin TJ, Cao J, Hall BM, Lueckel S, Adams CA. Prehospital shock index outperforms hypotension alone in predicting significant injury in trauma patients. Trauma Surg Acute Care Open [Internet]. 2021;6(1):e000712. Disponible en: http://dx.doi.org/10.1136/tsaco-2021-000712
Schroll R, Swift D, Tatum D, Couch S, Heaney JB, Llado-Farrulla M, et al. Accuracy of shock index versus ABC score to predict need for massive transfusion in trauma patients. Injury 2018; 49: 15–19. http://doi.org/10.1016/j.injury.2017.09.015
Shih AW, Al Khan S, Wang AY, Dawe P, Young PY, Greene,A, et al. Systematic reviews of scores and predictors to trigger activation of massive transfusion protocols. J. Trauma Acute Care Surg. 2019; 87: 717–729. http://doi.org/10.1097/TA.0000000000002372
Hu P, Uhlich R, Black J, Jansen JO, Kerby J, Holcomb JB. A new definition for massive transfusion in the modern era of whole blood resuscitation. Transfusion 2021; 61 (Suppl. 1): S252–S263. http://doi.org/10.1111/trf.16453
Arakaki LSL, Bulger EM, Ciesielski WA, Carlbom DJ, Fisk DM, Sheehan KL, et al. Muscle Oxygenation as an Early Predictor of Shock Severity in Trauma Patients. Shock 2017; 47: 599–605. http://doi.org/10.1097/SHK.0000000000000787
Schenkman KA, Carlbom DJ, Bulger EM, Ciesielski WA, Fisk DM, Sheehan KL, et al. Muscle oxygenation as an indicator of shock severity in patients with suspected severe sepsis or septic shock. PLoS ONE 2017; 12: e0182351 http://doi.org/10.1371/journal.pone.0182351
Schenkman KA, Hawkins DS, Ciesielski WA, Delaney M, Arakaki LS. Non-invasive assessment of muscle oxygenation may aid in optimising transfusion threshold decisions in ambulatory paediatric patients. Transfus. Med. 2017; 27: 25–29. http://doi.org/10.1111/tme.12384
Moore EE, Moore HB, Kornblith LZ, Neal MD, Hoffman M, Mutch NJ, et al. Traumainduced coagulopathy. Nat. Rev. Dis. Prim. 2021; 7. http://doi.org/10.1038/s41572-021-00264-3
Holcomb JB, Jenkins D, Rhee P, Johannigman J, Mahoney P, Mehta S, et al. Damage control resuscitation: Directly addressing the early coagulopathy of trauma. J. Trauma 2007; 62: 307–310. http://doi.org/10.1097/TA.0b013e3180324124
Van PY, Holcomb JB, Schreiber MA. Novel concep.pts for damage control resuscitation in trauma. Curr. Opin. Crit. Care 2017; 23: 498–502. http://doi.org/10.1097/MCC.0000000000000455
Yazer MH, Spinella PC, Anto V, Dunbar NM. Survey of group A plasma and low-titer group O whole blood use in trauma resuscitation at adult civilian level 1 trauma centers in the US. Transfusion 2021; 61: 1757–1763. http://doi.org/10.1111/trf.16394
Troughton M, Young PP. Conservation of Rh negative Low Titer O Whole Blood (LTOWB) and the need for a national conversation to define its use in trauma transfusion protocols. Transfusion 2021; 61: 1966–1971. http://doi.org/10.1111/trf.16380
Malkin M, Nevo A, Brundage SI, Schreiber M. Effectiveness and safety of whole blood compared to balanced blood components in resuscitation of hemorrhaging trauma patients—A systematic review. Injury 2021; 52: 182–188. http://doi.org/10.1016/j.injury.2020.10.095
Shea SM, Staudt AM, Thomas KA, Schuerer D, Mielke JE, Folkerts D, et al. The use of low-titer group O whole blood is independently associated with improved survival compared to component therapy in adults with severe traumatic hemorrhage. Transfusion 2020; 60 (Suppl. 3). http://doi.org/10.1111/trf.15696
Clements T, McCoy C, Assen S, Cardenas J, Wade C, Meyer D, et al. The prehospital use of younger age whole blood is associated with an improved arrival coagulation profile. J. Trauma Acute Care Surg. 2021; 90: 607–614. http://doi.org/10.1097/TA.0000000000003058
Fadeyi EA, Saha AK, Naal T, Martin H, Fenu E, Simmons JH, et al. A comparison between leukocyte reduced low titer whole blood vs non-leukocyte reduced low titer whole blood for massive transfusion activation. Transfusion 2020; 60: 2834–2840. http://doi.org/10.1111/trf.16066
Salamea-Molina, J.C.; Himmler, A.N.; Valencia-Angel, L.I.; Ordonez, C.A.; Parra MW, Caicedo Y, Guzman-Rodriguez M, Orlas C, Granados M, Macia C. Whole blood for blood loss: Hemostatic resuscitation in damage control. Colomb. Med. (Cali) 2020; 51: e4044511. http://doi.org/10.25100/cm.v51i4.4511
Yazer MH, Triulzi DJ, Sperry JL, Seheult JN. Rate of RhD-alloimmunization after the transfusion of multiple RhD-positive primary red blood cell-containing products. Transfusion 2021; 61 (Suppl. 1): S150–S158. http://doi.org/10.1111/trf.16495
Shackelford SA, Gurney JM, Taylor AL, Keenan S, Corley JB, Cunningham CW, et al. Joint Trauma System, Defense Committee on Trauma, and Armed Services Blood Program consensus statement on whole blood. Transfusion 2021; 61 (Suppl. 1):S333–S335. http://doi.org/10.1111/trf.16454
Williams J, Merutka N, Meyer D, Bai Y, Prater S, Cabrera R, et al. Safety profile and impact of low-titer group O whole blood for emergency use in trauma. J. Trauma Acute Care Surg. 2020; 88: 87–93. http://doi.org/10.1097/TA.0000000000002498
Yazer MH, Freeman A, Harrold IM, Anto V, Neal MD, Triulzi DJ, et al. Injured recipients of low-titer group O whole blood have similar clinical outcomes compared to recipients of conventional component therapy: A single-center, retrospective study. Transfusion 2021; 61: 1710–1720. http://doi.org/10.1111/trf.16390
Seheult JN, Anto V, Alarcon LH, Sperry JL, Triulzi DJ, Yazer MH. Clinical outcomes among low-titer group O whole blood recipients compared to recipients of conventional components in civilian trauma resuscitation. Transfusion 2018; 58: 1838–1845. http://doi.org/10.1111/trf.14779
Cruciani M, Franchini M, Mengoli C, Marano G, Pati I, Masiello F, et al. The use of whole blood in traumatic bleeding: A systematic review. Intern. Emerg. Med. 2021; 16.209–220. http://doi.org/10.1007/s11739-020-02491-0
Holcomb JB, Tilley BC, Baraniuk S, Fox EE, Wade CE, Podbielski JM, et al. Transfusion of plasma, platelets, and red blood cells in a 1:1:1 vs. a 1:1:2 ratio and mortality in patients with severe trauma: The PROPPR randomized clinical trial. JAMA 2015; 313: 471–482. http://doi.org/10.1001/jama.2015.12
Kemp Bohan PM, McCarthy PM, Wall ME, Adams AM, Chick RC, Forcum JE, et al. Safety and efficacy of low-titer O whole blood resuscitation in a civilian level I trauma center. J. Trauma Acute Care Surg. 2021; 91: S162–S168. http://doi.org/10.1097/TA.0000000000003289
Levy JH, Neal MD, Herman JH. Bacterial contamination of platelets for transfusion: Strategies for prevention. Crit. Care 2018; 22: 271. http://doi.org/10.1186/s13054-018-2212-9
Milford EM, Reade MC. Comprehensive review of platelet storage methods for use in the treatment of active hemorrhage. Transfusion 2016; 56 (Suppl. 2): S140–S148. http://doi.org/10.1111/trf.13504
Li Y, Xiong Y, Wang R, Tang F, Wang X. Blood banking-induced alteration of red blood cell oxygen release ability. Blood Transfus. 2016; 14: 238–244. http://doi.org/10.2450/2015.0055-15
Sparrow, R.L. Red blood cell storage duration and trauma. Transfus Med. Rev. 2015; 29: 120–126. http://doi.org/10.1016/j.tmrv.2014.09.007
Sowers N, Froese PC, Erdogan M, Green RS. Impact of the age of stored blood on trauma patient mortality: A systematic review. Can. J. Surg. 2015; 58: 335–342. http://doi.org/10.1503/cjs.011314
Jones AR, Patel RP, Marques MB, Donnelly JP, Griffin RL, Pittet JF, et al. Older Blood Is Associated With Increased Mortality and Adverse Events in Massively Transfused Trauma Patients: Secondary Analysis of the PROPPR Trial. Ann. Emerg. Med. 2019; 73: 650–661. http://doi.org/10.1016/j.annemergmed.2018.09.033
Remy KE, Sun J, Wang D, Welsh J, Solomon SB, Klein HG, et al. Transfusion of recently donated (fresh) red blood cells (RBCs) does not improve survival in comparison with current practice, while safety of the oldest stored units is yet to be established: A meta-analysis. Vox Sang. 2016; 111: 43–54. http://doi.org/10.1111/vox.12380
Milford EM, Reade MC. Resuscitation Fluid Choices to Preserve the Endothelial Glycocalyx. Crit. Care 2019; 23: 77. http://doi.org/10.1186/s13054-019-2369-x
Meledeo MA, Peltier GC, McIntosh CS, Bynum JA, Corley JB, Cap AP. Coagulation function of never frozen liquid plasma stored for 40 days. Transfusion 2021; 61 (Suppl. 1): S111–S118. http://doi.org/10.1111/trf.16526
Mok G, Hoang R, Khan MW, Pannell D, Peng H, Tien H, et al. Freeze-dried plasma for major trauma—Systematic review and meta-analysis. J. Trauma Acute Care Surg. 2021; 90: 589–602 http://doi.org/10.1097/TA.0000000000003012
Pusateri AE, Given MB, Schreiber MA, Spinella PC, Pati S, Kozar RA, et al. Dried plasma: State of the science and recent developments. Transfusion 2016; 56 (Suppl. 2): S128–S139. http://doi.org/10.1111/trf.13580
Shlaifer A, Siman-Tov M, Radomislensky I, Peleg K, Shina A, Baruch EN, et al. Prehospital administration of freeze-dried plasma, is it the solution for trauma casualties? J. Trauma Acute Care Surg. 2017; 83: 675–682. http://doi.org/10.1097/TA.0000000000001569
Winearls J, Campbell D, Hurn C, Furyk J, Ryan G, Trout M, et al. Fibrinogen in traumatic haemorrhage: A narrative review. Injury 2017; 48: 230–242. http://doi.org/10.1016/j.injury.2016.12.012
Winearls J, Wullschleger M, Wake E, Hurn C, Furyk J, Ryan G, et al. Fibrinogen Early In Severe Trauma studY (FEISTY): Study protocol for a randomised controlled trial. Trials 2017; 18: 241. http://doi.org/10.1186/s13063-017-1980-x
Meyer MA, Ostrowski SR, Sorensen AM, Meyer AS, Holcomb JB, Wade CE, et al. Fibrinogen in trauma, an evaluation of thrombelastography and rotational thromboelastometry fibrinogen assays. J. Surg. Res. 2015; 194: 581–590. http://doi.org/10.1016/j.jss.2014.11.021
Barry M, Trivedi A, Miyazawa BY, Vivona LR, Khakoo M, Zhang H, et al. Cryoprecipitate attenuates the endotheliopathy of trauma in mice subjected to hemorrhagic shock and trauma. J. Trauma Acute Care Surg. 2021; 90: 1022–1031. http://doi.org/10.1097/TA.0000000000003164
Bugaev N, Como JJ, Golani G, Freeman JJ, Sawhney JS, Vatsaas CJ, et al. Thromboelastography and rotational thromboelastometry in bleeding patients with coagulopathy: Practice management guideline from the Eastern Association for the Surgery of Trauma. J. Trauma Acute Care Surg. 2020; 89: 999–1017. http://doi.org/10.1097/TA.0000000000002944
Einersen PM, Moore EE, Chapman MP, Moore HB, Gonzalez E, Silliman CC, et al. Rapid thrombelastography thresholds for goal-directed resuscitation of patients at risk for massive transfusion. J. Trauma Acute Care Surg. 2017; 82: 114–119. http://doi.org/10.1097/TA.0000000000001270
Sharp G, Young CJ. Point-of-care viscoelastic assay devices (rotational thromboelastometry and thromboelastography): A primer for surgeons. ANZ J. Surg. 2019; 89: 291–295. http://doi.org/10.1111/ans.14836
Brill JB, Cotton BA, Brenner M, Duchesne J, Ferrada P, Horer T, et al. The Role of TEG and ROTEM in Damage Control Resuscitation. Shock 2021. http://doi.org/10.1097/SHK.0000000000001686
Gall LS, Vulliamy P, Gillespie S, Jones TF, Pierre RSJ, Breukers SE, et al. The S100A10 Pathway Mediates an Occult Hyperfibrinolytic Subtype in Trauma Patients. Ann. Surg. 2019; 269: 1184–1191. http://doi.org/10.1097/SLA.0000000000002733
Curry NS, Davenport R, Pavord S, Mallett SV, Kitchen D, Klein AA, et al. The use of viscoelastic haemostatic assays in the management of major bleeding: A British Society for Haematology Guideline. Br. J. Haematol. 2018; 182: 789–806. http://doi.org/10.1111/bjh.15524
Roullet S, de Maistre E, Ickx B, Blais N, Susen S, Faraoni D, et al. Position of the French Working Group on Perioperative Haemostasis (GIHP) on viscoelastic tests: What role for which indication in bleeding situations? Anaesth. Crit. Care Pain Med. 2019; 38: 539–548. http://doi.org/10.1016/j.accpm.2017.12.014
Myers SP, KutcherME, Rosengart MR, Sperry JL, Peitzman AB, Brown JB, et al. Tranexamic acid administration is associated with an increased risk of posttraumatic venous thromboembolism. J. Trauma Acute Care Surg. 2019; 86: 20–27. http://doi.org/10.1097/TA.0000000000002061
Barrett CD, Moore HB, Vigneshwar N, Dhara S, Chandler J, Chapman MP, et al. Plasmin thrombelastography rapidly identifies trauma patients at risk for massive transfusion, mortality, and hyperfibrinolysis: A diagnostic tool to resolve an international debate on tranexamic acid? J. Trauma Acute Care Surg. 2020; 89: 991–998. http://doi.org/10.1097/TA.0000000000002941
Khan M, Jehan F, Bulger EM, O’Keeffe T, Holcomb JB, Wade CE, et al. Severely injured trauma patients with admission hyperfibrinolysis: Is there a role of tranexamic acid? Findings from the PROPPR trial. J. Trauma Acute Care Surg. 2018; 85: 851–857. http://doi.org/10.1097/TA.0000000000002022
Selby R. “TEG talk”: Expanding clinical roles for thromboelastography and rotational thromboelastometry. Hematol. Am. Soc. Hematol. Educ. Program. 2020; 2020: 67–75. http://doi.org/10.1182/hematology.2020000090
McQuilten ZK, Wood EM, Bailey M, Cameron PA, Cooper DJ. Fibrinogen is an independent predictor of mortality in major trauma patients: A five-year statewide cohort study. Injury 2017; 48: 1074–1081. http://doi.org/10.1016/j.injury.2016.11.021
182. Nakamura, Y.; Ishikura, H.; Kushimoto, S.; Kiyomi, F.; Kato, H.; Sasaki, J.; Ogura, H.; Matsuoka, T.; Uejima, T.; Morimura, N.; et al. Fibrinogen level on admission is a predictor for massive transfusion in patients with severe blunt trauma: Analyses of a retrospective multicentre observational study. Injury 2017, 48, 674–679. http://doi.org/10.1016/j.injury.2017.01.031
Innerhofer P, Fries D, Mittermayr M, Innerhofer N, von Langen D, Hell T, et al. Reversal of trauma-induced coagulopathy using first-line coagulation factor concentrates or fresh frozen plasma (RETIC): A single-centre, parallel-group, open-label, randomised trial. Lancet Haematol. 2017. http://doi.org/10.1016/S2352-3026(17)30077-7
Nascimento B, Callum J, Tien H, Peng H, Rizoli S, Karanicolas P, et al. Fibrinogen in the initial resuscitation of severe trauma (FiiRST): A randomized feasibility trial. Br. J. Anaesth. 2016; 117:775–782. http://doi.org/10.1093/bja/aew343
Yamamoto K, Yamaguchi A, Sawano M, Matsuda M, Anan M, Inokuchi K, et al. Pre-emptive administration of fibrinogen concentrate contributes to improved prognosis in patients with severe trauma. Trauma Surg. Acute Care Open 2016; 1: e000037. http://doi.org/10.1136/tsaco-2016-000037
Su Y, Chen Y, Zhang W, Liu L, Cao X, Wu J. Platelet factor 4 and beta-thromboglobulin mRNAs in circulating microparticles of trauma patients as diagnostic markers for deep vein thrombosis. J. Thromb. Thrombolysis 2020; 50: 525–532. http://doi.org/10.1007/s11239-020-02124-5
Neisser-Svae A, Hegener O, Gorlinger K. Differences in the biochemical composition of three plasma derived human fibrinogen concentrates. Thromb. Res. 2021; 205: 44–46. http://doi.org/10.1016/j.thromres.2021.06.020
Nagashima F, Inoue S, Koami H, Miike T, Sakamoto Y, Kai K. High-dose Factor XIII administration induces effective hemostasis for trauma-associated coagulopathy (TAC) both in vitro and in rat hemorrhagic shock in vivo models. J. Trauma Acute Care Surg. 2018; 85: 588–597. http://doi.org/10.1097/TA.0000000000001998
Mallat J, Lazkani A, Lemyze M, Pepy F, Meddour M, Gasan G, et al. Repeatability of blood gas parameters, PCO2 gap, and PCO2 gap to arterial-to-venous oxygen content difference in critically ill adult patients. Medicine (Baltimore) 2015;94: e415. http://doi.org/10.1097/MD.0000000000000415
Mallat J, Lemyze M, Tronchon L, Vallet B, Thevenin D. Use of venous-to-arterial carbon dioxide tension difference to guide resuscitation therapy in septic shock. World J. Crit. Care Med. 2016; 5: 47–56. http://doi.org/10.5492/wjccm.v5.i1.47
Pohlman TH, Walsh M, Aversa J, Hutchison EM, Olsen KP, Lawrence Reed R. Damage control resuscitation. Blood Rev. 2015; 29: 251–262. http://doi.org/10.1016/j.blre.2014.12.006
Gutterman DD, Chabowski DS, Kadlec AO, Durand MJ, Freed JK, Ait-Aissa K, et al. The Human Microcirculation: Regulation of Flow and Beyond. Circ. Res. 2016; 118: 157–172. http://doi.org/10.1161/CIRCRESAHA.115.305364
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2024 María Fernanda Torres Proaño , Erika Adriana Madrid Peralta, Diego Alexander Hermida Pareja, Katherine Isabel Bravo Orellana, Víctor Manuel Sellan Bustamante
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores conservan los derechos morales y patrimoniales de sus obras. Puesto que Tesla Revista Científica es una publicación de acceso abierto, los lectores pueden reproducir total o parcialmente su contenido siempre y cuando proporcionen adecuadamente el crédito a los autores correspondientes y a la revista misma. Tesla Revista Científica se compromete a no hacer uso comercial de los textos que recibe y/o publica.
Nuestra revista se rige por las politicas internacionales SHERPA/RoMEO: Revista verde: Permiten el autoarchivo tanto del pre-print (borrador de un trabajo) como del post-print (la versión corregida y revisada por pares) y hasta de la versión final (maquetada tal como saldrá publicada en la revista).
Véase también "Derechos de autor y licencias".